The steroid hormone 20-hydroxyecdysone enhances neurite growth of Drosophila mushroom body neurons isolated during metamorphosis.

نویسندگان

  • R Kraft
  • R B Levine
  • L L Restifo
چکیده

Mushroom bodies (MBs) are symmetrically paired neuropils in the insect brain that are of critical importance for associative olfactory learning and memory. In Drosophila melanogaster, the MB intrinsic neurons (Kenyon cells) undergo extensive reorganization at the onset of metamorphosis. A phase of rapid axonal degeneration without cell death is followed by axonal regeneration. This re-elaboration occurs as levels of the steroid hormone 20-hydroxyecdysone (20E) are rising during the pupal stage. Based on the known role of 20E in directing many features of CNS remodeling during insect metamorphosis, we hypothesized that the outgrowth of MB axonal processes is promoted by 20E. Using a GAL4 enhancer trap line (201Y) that drives MB-restricted reporter gene expression, we identified Kenyon cells in primary cultures dissociated from early pupal CNS. Paired cultures derived from single brains isolated before the 20E pupal peak were incubated in medium with or without 20E for 2-4 d. Morphometric analysis demonstrated that MB neurons exposed to 20E had significantly greater total neurite length and branch number compared with that of MB neurons grown without hormone. The relationship between branch number and total neurite length remained constant regardless of hormone treatment in vitro, suggesting that 20E enhances the rate of outgrowth from pupal MB neurons in a proportionate manner and does not selectively increase neuritic branching. These results implicate 20E in enhancing axonal outgrowth of Kenyon cells to support MB remodeling during metamorphosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phenotypes of Drosophila brain neurons in primary culture reveal a role for fascin in neurite shape and trajectory.

Subtle cellular phenotypes in the CNS may evade detection by routine histopathology. Here, we demonstrate the value of primary culture for revealing genetically determined neuronal phenotypes at high resolution. Gamma neurons of Drosophila melanogaster mushroom bodies (MBs) are remodeled during metamorphosis under the control of the steroid hormone 20-hydroxyecdysone (20E). In vitro, wild-type ...

متن کامل

Expansion of the central arborizations of persistent sensory neurons during insect metamorphosis: the role of the steroid hormone, 20-hydroxyecdysone.

During insect metamorphosis many larval neurons persist but are modified to serve new behavioral roles at later stages of life. For example, certain larval mechanosensory neurons expand their central arborizations during pupal development and evoke a different behavioral response, the gin trap reflex. The role of the insect steroid hormone, 20-hydroxyecdysone (20-HE) in this developmental chang...

متن کامل

Ex vivo culturing of whole, developing Drosophila brains.

We describe a method for ex vivo culturing of whole Drosophila brains. This can be used as a counterpoint to chronic genetic manipulations for investigating the cell biology and development of central brain structures by allowing acute pharmacological interventions and live imaging of cellular processes. As an example of the technique, prior work from our lab(1) has shown that a previously unre...

متن کامل

Antagonistic actions of juvenile hormone and 20-hydroxyecdysone within the ring gland determine developmental transitions in Drosophila

In both vertebrates and insects, developmental transition from the juvenile stage to adulthood is regulated by steroid hormones. In insects, the steroid hormone, 20-hydroxyecdysone (20E), elicits metamorphosis, thus promoting this transition, while the sesquiterpenoid juvenile hormone (JH) antagonizes 20E signaling to prevent precocious metamorphosis during the larval stages. However, not much ...

متن کامل

Steroid Hormones in Drosophila: How Ecdysone Coordinates Developmental Signalling with Cell Growth and Division

1.1 The ecdysone pathway directs Drosophila development Ecdysone is the major steroid hormone in all holometabolous insects responsible for driving the metamorphosis of larval tissues into adult structures. During metamorphosis, ecdysone is essential for upregulating the genes required to control apoptosis and differentiation, essential processes for removal of larval structures which have beco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 18 21  شماره 

صفحات  -

تاریخ انتشار 1998